Digital controller for medium-low temperature refrigeration applications

XW60LH

GENERAL WARNING	
GENERAL DESCRIPTION	1
CONTROLLING LOADS	
MAIN FUNCTIONS	2
PARAMETERS	2
DIGITAL INPUTS	
INSTALLATION AND MOUNTING	
TECHNICAL DATA	5
CONNECTIONS	5
DEFAULT SETTING VALUES	5
	GENERAL DESCRIPTION CONTROLLING LOADS. FRONT PANEL COMMANDS. MAX & MIN TEMPERATURE MEMORIZATION. MAIN FUNCTIONS. PARAMETERS. DIGITAL INPUTS. TIL SERIAL LINE - FOR MONITORING SYSTEMS. X-REP OUTPUT - OPTIONAL INSTALLATION AND MOUNTING. ELECTRICAL CONNECTIONS. HOW TO USE THE HOT KEY. ALARM SIGNALS. TECHNICAL DATA. CONNECTIONS.

GENERAL WARNING

PLEASE READ BEFORE USING THIS MANUAL

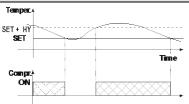
- This manual is part of the product and should be kept near the instrument for easy and quick reference
- The instrument shall not be used for purposes different from those described hereunder. It cannot be used as a safety device
- Check the application limits before proceeding.
- Dixell Srl reserves the right to change the composition of its products, even without notice, ensuring the same and unchanged functionality.

SAFETY PRECAUTIONS

- Check the supply voltage is correct before connecting the instrument.
- Do not expose to water or moisture; use the controller only within the operating limits avoiding sudden temperature changes with high atmospheric humidity to prevent formation of condensation
- Warning: disconnect all electrical connections before any kind of maintenance.
- Fit the probe where it is not accessible by the End User. The instrument must not be opened.
- In case of failure or faulty operation send the instrument back to the distributor or to "Dixell S.r.l." (see address) with a detailed description of the fault.
- Consider the maximum current which can be applied to each relay (see Technical Data).
- Ensure that the wires for probes, loads and the power supply are separated and far enough from each other, without crossing or intertwining.
- In case of applications in industrial environments, the use of mains filters (our mod. FT1) in parallel with inductive loads could be useful.
- Dixell SrI reserves the right to change the composition of its products, even without notice, ensuring the same and unchanged functionality.

GENERAL DESCRIPTION

Model XW60LH, format 38x185mm, is microprocessor based controller, suitable for applications on medium or low temperature ventilated refrigerating units. It has 4 relay outputs to control compressor, fan, defrost, which can be either electrical or reverse cycle (hot gas) and a fourth configurable output. They could be provided with a Real Time Clock which allows programming of up to 6 daily defrost cycles, divided into holidays and workdays. A "Day and Night" function with two different set points is fitted for energy saving. They are also provided with up to four NTC or PTC probe inputs, the first one for temperature control, the second one, to be located onto the evaporator, to control the defrost termination temperature and to managed the fan. One of the digital inputs can operate as third temperature probe. The fourth probe is used to signal the condenser temperature alarm or to display


The HOT KEY output allows to connect the unit, by means of the external module XJ485-CX, to a network line ModBUS-RTU compatible such as the dixal monitoring units of X-WEB family. It allows to program the controller by means the HOT KEY programming keyboard.

The instrument is fully configurable through special parameters that can be easily programmed through the keyboard

3. CONTROLLING LOADS

3.1 COMPRESSOR

The regulation is performed according to the temperature measured by the thermostat probe with a positive differential from the set point: if the temperature increases and reaches point plus differential the compressor is started and then turned off when the temperature reaches the set point value again.

In case of fault in the thermostat probe the start and stop of the compressor are timed through parameters Con and CoF.

3.2 DEFROST

Two defrost modes are available through the tdF parameter: defrost through electrical heater (tdF = EL) and hot gas defrost (tdF = in).

The defrost interval depends on the presence of the RTC (optional). If the RTC is present is controlled by means of parameter EdF:

EdF=in: a defrost starts after elapsing the idF time (standard way for controller without RTC). EdF=rtC: defrosts are scheduled by using a real time clock system, depending on the hours set in the parameters Ld1..Ld6, during workdays, and in Sd1...Sd6 during holidays.

Other parameters are used to control defrost cycles: its maximum length (MdF) and two defrost

modes: timed or controlled by the evaporator's probe (P2P).

At the end of defrost dripping time is started, its length is set in the Fdt parameter. With Fdt=0 the dripping time is disabled.

CONTROL OF EVAPORATOR FANS

The fan control mode is selected by means of the FnC parameter:

- FnC=C_n: fans will switch ON and OFF with the compressor and not run during defrost;
- FnC=o n: fans will run even if the compressor is off, and not run during defrost;
- FnC=C_Y: fans will switch ON and OFF with the compressor and run during defrost;
- FnC=o_Y: fans will run continuously also during defrost.

After defrost, there is a timed fan delay allowing for drip time, set by means of the Fnd parameter. An additional parameter FSt provides the setting of temperature, detected by the evaporator probe, above which the fans are always OFF. This is used to make sure circulation of air only if his temperature is lower than set in FSt.

3.3.1 Forced activation of evaporator fans

This function, managed by the FCt parameter, is designed to avoid short cycles of evaporator fans, which could happen when the controller is switched on or after a defrost (when the room air warms the evaporator). If the temperature difference between the evaporator and the room probes is higher than the value set in the FCt parameter the fans are switched on. With FCt=0 this function is

3.3.2 Fans cyclic activation with compressor off.

When FnC=C-n or C-Y (fans working in parallel with the compressor), by means of the Fon and FoF parameters the fans can carry out on and off cycles even if the compressor is switched off. When the compressor is stopped the fans go on working for the Fon time. With Fon=0 the fans remain always off, when the compressor is off.

3.4 AUXILIARY OUTPUT CONFIGURATION

The functioning of the auxiliary relay can be set by the oAx parameters according to the kind of application. In the following paragraph the possible settings are explaided.

3.4.1 Auxiliary thermostat

A possible use is the anti condensing heater, with the possibility of switching it on and off also by keyboard.

Parameters involved:

- ACH: kind of regulation for the auxiliary relay: Ht: heating; cL: cooling;
- SAA: set point for auxiliary relay
- SHy: differential for auxiliary relay;
- ArP: probe for auxiliary relay;
- Sdd: auxiliary output off during defrost.

The differential is given by the SHy parameter

The auxiliary relay can be switched on also by using the AUX button. In this case it remains on till it's manually switched off.

NOTE: If oAx=AUS and ArP=nP (no probe for auxiliary output), the AUX relay can be activated only by pushing the AUX button of the keyboard.

3.4.2 On/off relay - oAx = onF

In this case the relay is activated when the controller is turned on and de-activated when the

3.4.3 Neutral zone regulation

With oAx=db the AUX relay can control a heater element to perform a neutral zone action.

- output oAx cut in = SET-HY
- output oAx cut out = SET.

3.4.4 Second compressor

With oAx=CP2, the AUX relay operates as second compressor: it is activated in parallel with the relay of the first compressor, with a proper activation delay (set in the AC1 parameter). Both the compressors are switched off at the same time.

3.4.5 Alarm relay

With oAx=ALr the AUX relay operates as alarm relay. It is activated every time an alarm happens. Its status depends on the tbA parameter:

- tbA=Y: the relay is silenced by pressing any key;
- tbA=n: the alarm relay remains on until the alarm condition recovers.

3.4.6 Night blind management during energy saving cycles

With oAx=HES the AUX relay operates to manage the night blind: the relay is energised when the energy saving cycle is activated by digital input, frontal button or RTC (optional)

4. FRONT PANEL COMMANDS

SET	To display target set point; in programming mode it selects a parameter or confirm an operation.
**	(DEF) To start a manual defrost.
	(UP) To see the max stored temperature; in programming mode it browses the parameter codes or increases the displayed value.
>	(DOWN) To see the min stored temperature; in programming mode it browses the parameter codes or decreases the displayed value.
(l)	(OFF) To switch the instrument off, if onF=oFF.
- ;ģ-	(LiG) To switch the light, if oA3=Lig.

KEY COMBINATIONS:

⊕ + ♥	To lock & unlock the keyboard.
SET+	To enter in programming mode.
SET +	To return to the room temperature display.

4.1 USE OF LEDS

Each LED function is described in the following table.

LED	MODE	FUNCTION
*	ON	Compressor enabled
***	Flashing	Anti-short cycle delay enabled
*	ON	Defrost enabled
*,7,4	Flashing	Drip time in progress
45	ON	Fans enabled
	Flashing	Fans delay after defrost in progress.
	ON	An alarm is occurring
*	ON	Continuous cycle is running
ECO	ON	Energy saving enabled
- ;	ON	Light on
AUX	ON	Auxiliary relay on
°C/°F	ON	Measurement unit
U/ F	Flashing	Programming phase

5. MAX & MIN TEMPERATURE MEMORIZATION

HOW TO SEE THE MIN TEMPERATURE

- Press and release the DOWN key.
- The "Lo" message will be displayed followed by the minimum temperature recorded
- By pressing the DOWN key again or by waiting 5 sec the normal display will be restored.

HOW TO SEE THE MAX TEMPERATURE

- Press and release the UP key.
- The "Hi" message will be displayed followed by the maximum recorded temperature.
- By pressing the **UP** key again or by waiting 5 sec the normal display will be restored.

HOW TO RESET THE MAX AND MIN TEMPERATURE RECORDED

- Keep SET key pressed more than 3 sec, while the max or min temperature is displayed. (rSt
- To confirm the operation the "rSt" message starts blinking and the normal temperature will be displayed

6. MAIN FUNCTIONS

TO SET THE CURRENT TIME AND DAY (ONLY WITH RTC)

When the instrument is switched on, it's necessary to program the time and day.

- Enter the Pr1 programming menu, by pushing the SET+ DOWN keys for 3 sec.
- The rtC parameter is displayed. Push the SET key to enter the real time clock menu.
- 3 The Hur (hour) parameter is displayed.
- Push the SET and set current hour by the UP and DOWN keys, then push SET to 4. confirm the value.
- Repeat the same operations with Min (minutes) and dAy (day) parameters.

To exit: Push both SET+UP keys or wait for 15 sec without pushing any keys.

HOW TO SEE THE SET POINT

- Push and immediately release the SET key: the display will show the Set point value.
- Push and immediately release the SET key or wait for 5 sec to display the probe value again.

6.3 HOW TO CHANGE THE SETPOINT

- Push the SET key more than 2 sec to change the Set point value;
- The value of the set point will be displayed and the "°C" or "°F" LED will start blinking.
- To change the Set value, push both UP and DOWN arrows within 10 sec
- To store the new set point value, push the SET key again or wait for 10 sec

HOW TO START A MANUAL DEFROST

Push the DEF key more than 2 sec and to start a manual defrost.

6.5 HOW TO CHANGE A PARAMETER VALUE

To change any parameter, operate as follows:

- 1. Enter the Programming mode by pressing both SET+DOWN keys for 3 sec (the "°C" or "°F" LED will start blinking).
- Select the required parameter and then press the SET key to display its value.
- Use UP or DOWN keys to change its value.
- Press SET to store the new value and move to the following parameter.

To exit: press both SET+UP keys or wait for 15 sec without pressing any key

NOTE: the set value is stored even when the procedure is exited by waiting the time-out to expire.

THE HIDDEN MENU

The hidden menu shows all the parameters of the instrument.

6.6.1 HOW TO ENTER THE HIDDEN MENU (Pr2)

1. Enter the Programming mode by pressing the SET+DOWN keys for 3 sec (the "°C" or "°F" LED will start blinking)

- 2. Released the keys and then push again the SET+DOWN keys more than 7 sec. The "Pr2" labe will be displayed immediately followed by the HY parameter
 - NOW THE HIDDEN MENU IS DISPLAYED.
- Select the required parameter.
- Press the SET key to display its value
- Use UP or DOWN keys to change its value.
- Press SET to store the new value and move to the following parameter

To exit: press SET+UP keys or wait for 15 sec without pressing any key.

NOTE1: if no parameters are present in Pr1, after 3 sec the "noP" message will be displayed. Keep the keys pushed till the Pr2 message is displayed.

NOTE2: the set value is stored even when the procedure is exited by waiting the time-out to expire.

6.6.2 MOVE A PARAMETER FROM Pr2 TO Pr1 AND VICEVERSA.

Each parameter present in the Pr2 (HIDDEN MENU) can be moved to the Pr1 (user level) by pressing both SET+DOWN keys.

When in Pr2 (hidden menu) if a parameter is visible in Pr1, then the decimal point will be on.

6.7 MANUALLY LOCK AND UNLOCK THE KEYBOARD

★+♥

HOW TO LOCK THE KEYBOARD

- Keep both UP+DOWN keys pressed more than 3 sec.
- The "PoF" message will be displayed and the keyboard is locked. At this point it is only possible the viewing of the set point or the MAX o Min temperature stored and to switch ON and OFF the light, the auxiliary output and the instrument.

HOW TO UNLOCK THE KEYBOARD

Keep bothj UP+DOWN keys pressed more than 3 sec.

THE CONTINUOUS CYCLE

When defrost is not active, a continuous cycle can be activated by keeping the UP key pressed for about 3 sec. The compressor operates to maintain the CCS set point for the time set through the CCt parameter. The cycle can be terminated before the end of the set time by keeping the UP key pressed 3 sec.

THE ON/OFF FUNCTION

With onF=oFF, after pushing the ON/OFF key the instrument is switched off. The "OFF" message will be displayed. In this configuration the regulation is disabled. To switch the instrument on, push again the ON/OFF key

WARNING: Loads connected to the normally closed contacts of the relays are always supplied and under voltage, even if the instrument is in stand by mode

7. PARAMETERS

Real time clock menu (only for controller with RTC): to set the time, date and defrost start time

REGULATION		
НҮ	Differential: (0.1 to 25.5°C; 1 to 45°F) intervention differential for set point. Compressor Cut IN is Set Point + differential (HY). Compressor Cut OUT is when the temperature reaches the set point.	
LS	Minimum set point: (-55°C to SET; -67°F to SET) sets the minimum value for the set point.	
US	Maximum set point: (SET to 150°C; SET to 302°F) set the maximum value for set point.	
ot	Thermostat probe calibration: (-12.0 to 12.0°C; -21 to 21°F) allows to adjust possible offset of the thermostat probe.	
P2P	Evaporator probe presence: $(n; Y)$ $n = not$ present, the defrost stops by time; $Y = present$, the defrost stops by temperature.	
οE	Evaporator probe calibration: (-12.0 to 12.0 °C; -21 to 21 °F) allows to adjust possible offset of the evaporator probe.	
P3P	Third probe presence (P3): (n; Y) $n = not$ present, the terminals 18-20 operate as digital input; $Y = present$, the terminals 18-20 operate as third probe.	
03	Third probe calibration (P3): (-12.0 to 12.0 °C; -21 to 21 °F) allows to adjust possible offset of the third probe.	
P4P	Fourth probe presence: (n; Y) n = Not present; Y = present. NOTE: only for XW60LH models.	
04	Fourth probe calibration: (-12.0 to 12.0 °C; -21 to 21 °F) allows to adjust possible offset of the fourth probe. NOTE: only for XW60LH models.	
odS	Outputs activation delay at start up: (0 to 255min) this function is enabled at the initial start up of the instrument and inhibits any output activation for the period of time set in the parameter.	
AC	Anti-short cycle delay: (0 to 50min) minimum interval between the compressor stop and the following restart.	
rtr	Percentage of the second and first probe for regulation: (0 to 100; 100=P1, 0=P2) it allows to set the regulation according to the percentage of the first and second probe, as for the following formula (rtr(P1-P2)/100 + P2).	
CCt	Compressor ON time during continuous cycle: (0.0 to 24h00min, res. 10min) allows to set the length of the continuous cycle. Compressor stays on without interruption during CCt time. This is useful, for instance, when the room is filled with new products.	
CCS	Set point for continuous cycle: (-55 to 150°C; -67 to 302°F) it sets the set point used during the continuous cycle.	

Compressor ON time with faulty probe: (0 to 255min) time during which the

compressor is active in case of faulty thermostat probe. With Con=0 compressor is

Compressor OFF time with faulty probe: (0 to 255min) time during which the

compressor is OFF in case of faulty thermostat probe. With CoF=0 compressor is

Con

CoF

always OFF

always active

DISPLAY	
CF	Temperature measurement unit: (°C; °F) °C = Celsius; °F = Fahrenheit. WARNING: When the measurement unit is changed the SET point and the values of the parameters HY, LS, US, ot, ALU and ALL have to be checked and modified (if necessary).
rES	Resolution (for °C): (in=1°C; dE=0.1°C) allows decimal point display.
Lod	Instrument display: (P1; P2, P3, P4, SET, dtr) it selects which probe is displayed by the instrument. $P1$ = Thermostat probe; $P2$ = Evaporator probe; $P3$ = Third probe (only for model with this option enabled); $P4$ = Fourth probe, SET = set point; dtr = percentage of visualization.
rEd	X-REP display (optional): (P1; P2, P3, P4, SET, dtr) it selects which probe is displayed by X- REP. P1 = Thermostat probe; P2 = Evaporator probe; P3 = Third probe (only for model with this option enabled); P4 = Fourth probe, SET = set point; dtr = percentage of visualization.
dLY	Display delay: (0 to 20min00s; res. 10s) when the temperature increases, the display is updated of 1°C or 1°F after this time.
dtr	Percentage of the second and first probe for visualization when Lod=dtr: (0 to 99; 100=P1, 0=P2) if Lod=dtr it allows to set the visualization according to the percentage of the first and second probe, as for the following formula (dtr(P1-P2)/100 + P2).

	1 2/1100 + 1 2/.		
DEFROST			
EdF	Defrost mode (only for controller with RTC):		
	- rtC: Real Time Clock mode. Defrost time follows Ld1 to Ld6 parameters on		
	workdays and Sd1 to Sd6 on holidays.		
	 in: interval mode. The defrost starts when the time idf is expired. 		
tdF	Defrost type: (EL; in) EL = electrical heater; in = hot gas.		
dFP	Probe selection for defrost termination: (nP; P1; P2; P3; P4) nP = no probe;		
	P1 =thermostat probe; P2 = evaporator probe; P3 =configurable probe; P4 = Probe		
	on Hot Key plug.		
dtE	Defrost termination temperature: (-55 to 50°C; -67 to 122°F) (enabled only when		
	EdF=Pb) sets the temperature measured by the evaporator probe, which causes the end of defrost.		
idF	Interval between defrost cycles: (0 to 120hours) determines the interval of time		
Iui	between two defrost cycles.		
MdF	(Maximum) length for defrost: (0 to 255min) when P2P=n, (not evaporator probe:		
	timed defrost) it sets the defrost duration. When P2P=Y (defrost end based on		
	temperature) it sets the maximum length for defrost.		
dSd	Start defrost delay: (0 to 99min) this is useful when different defrost start times are		
	necessary to avoid overloading the plant.		
dFd	Temperature displayed during defrost: (rt; it; SEt; dEF) rt = real temperature;		
dAd	it = temperature at defrost start; SEt = set point; dEF = "dEF" label. MAX display delay after defrost: (0 to 255min) sets the maximum time between the		
uAu	end of defrost and the restarting of the real room temperature display.		
Fdt	Drip time: (0 to 120min) time interval between reaching defrost termination		
	temperature and the restoring of the control's normal operation. This time allows the		
	evaporator to eliminate water drops that might have formed due to defrost.		
dPo	First defrost after start-up: (n; Y) n = after the idF time, Y = immediately.		
dAF	Defrost delay after continuous cycle: (0.0 to 24h00min, res. 10min) time interval		
	between the end of the fast freezing cycle and the following defrost related to it.		

FANS	FANS		
FnC	Fans operating mode: (C-n; o-n; C-Y; o-Y) C-n = runs with the compressor, OFF during defrost; o-n = continuous mode, OFF during defrost; C-Y = runs with the compressor, ON during defrost; o-Y = continuous mode, ON during defrost.		
Fnd	Fans delay after defrost: (0 to 255min) interval between end of defrost and evaporator fans start.		
FCt	Temperature differential to avoid fan short cycles: (0 to 59°C; 0 to 90°F) (N.B.: FCt=0 means function disabled) if the difference of temperature between the evaporator and the room probes is higher than FCt value, the fans will be switched on.		
FSt	Fans stop temperature: (-55 to 50°C; -67 to 122°F) setting of temperature, detected by evaporator probe, above which fans are always OFF.		
Fon	Fan ON time: (0 to 15min) with Fnc=C_n or C_Y, (fan activated in parallel with compressor) it sets the evaporator fan ON cycling time when the compressor is off. With Fon=0 and FoF≠0 the fan are always off, with Fon=0 and FoF=0 the fan are always off.		
FoF	Fan OFF time: (0 to 15min) With FnC=C_n or C_Y, (fan activated in parallel with compressor) it sets the evaporator fan off cycling time when the compressor is off. With Fon=0 and FoF≠0 the fan are always off, with Fon=0 and FoF=0 the fan are always off.		
FAP	Probe selection for fan management: (nP; P1; P2; P3; P4) nP = no probe; P1 =thermostat probe; P2 = evaporator probe; P3 =configurable probe; P4 = Probe on Hot Key plug.		

ACH	Kind of regulation for auxiliary relay: (Ht; CL) Ht = heating; CL = cooling.
SAA	Set Point for auxiliary relay: (-55.0 to 150.0°C; -67 to 302°F) it defines the room
	temperature set point to switch auxiliary relay.
SHY	Differential for auxiliary output: (0.1 to 25.5°C; 1 to 45°F) intervention differential for
	auxiliary output set point.
	 ACH=CL, AUX Cut in is [SAA+SHY]; AUX Cut out is SAA.
	 ACH=Ht, AUX Cut in is [SAA-SHY]; AUX Cut out is SAA.
ArP	Probe selection for auxiliary: (nP; P1; P2; P3; P4) nP = no probe, the auxiliary relay

AUXILIARY THERMOSTAT CONFIGURATION

	(evaporator probe), P3 = Probe 3 (dispray probe), P4 = Probe 4.
Sdd	Auxiliary relay off during defrost: (n; Y) n = the auxiliary relay operates during
	defrost. Y = the auxiliary relay is switched off during defrost.

is switched only by the digital input; P1 = Probe 1 (Thermostat probe); P2 = Probe 2

	ALARMS				
Ī	ALP	Probe selection for alarm: (nP; P1; P2; P3; P4) nP = no probe			

Probe selection for alarm: (nP; P1; P2; P3; P4) nP = no probe, the temperature alarms are disabled; P1 = Probe 1 (Thermostat probe); P2 = Probe 2 (evaporator probe);

P3 = Probe 3 (display probe); P4 = Fourth probe

ALC Temperature alarms configuration: (Ab; rE) Ab = absolute temperature, alarm temperature is given by the ALL or ALU values. rE = temperature alarms are referred to the set point. Temperature alarm is enabled when the temperature exceeds the [SET+ALU] or [SET-ALL] values.

ALU MAXIMUM temperature alarm:

- If ALC=Ab: [ALL to 150.0°C or ALL to 302°F]
- If ALC=rE: [0.0 to 50.0°C or 0 to 90°F]

when this temperature is reached the alarm is enabled, after the **ALd** delay time.

ALL Minimum temperature alarm:

- If ALC=Ab: [-55°C to ALU; -67 to ALU]
 - If ALC=rE: [0.0 to 50.0°C or 0 to 90°F]

when this temperature is reached the alarm is enabled, after the **ALd** delay time.

AFH Differential for temperature alarm recovery: (0.1 to 25.5°C; 1 to 45°F) intervention differential for recovery of temperature alarm.

ALd Temperature alarm delay: (0 to 255 min) time interval between the detection of an alarm condition and alarm signalling.

dAo Exclusion of temperature alarm at start-up: (0.0 to 24h00min, res. 10min) time interval between the detection of the temperature alarm condition after instrument power on and alarm signalling.

CONDENSER TEMPERATURE ALARM

AP2	Probe selection for temperature alarm of condenser: (nP; P1; P2; P3; P4)
	nP = no probe; P1 = thermostat probe; P2 = evaporator probe; P3 = configurable
	probe; P4 = Probe on Hot Key plug.
AL2	Low temperature alarm of condenser: (-55 to 150°C; -67 to 302°F) when this
	temperature is reached the LA2 alarm is signalled, possibly after the Ad2 delay.
Au2	High temperature alarm of condenser: (-55 to 150°C; -67 to 302°F) when this
	temperature is reached the HA2 alarm is signalled, possibly after the Ad2 delay.
AH2	Differential for temperature condenser alarm recovery: 0.1 to 25.5°C; 1 to 45°F.
Ad2	Condenser temperature alarm delay: (0 to 255 min) time interval between the
	detection of the condenser alarm condition and alarm signalling.
dA2	Condenser temperature alarm exclusion at start up: 0.0 to 24h00min, res. 10min.
bLL	Compressor off with low temperature alarm of condenser: (n; Y) n = compressor
	keeps on working; Y = compressor is switched off till the alarm is present, in any case
	regulation restarts after AC time at minimum.
AC2	Compressor off with high temperature alarm of condenser: (n; Y) n = compressor
	keeps on working; Y = compressor is switched off till the alarm is present, in any case
	regulation restarts after AC time at minimum.

OUTPUT RELAY

tbA	Alarm relay silencing (with oAx =ALr): (n; Y) n = silencing disabled: alarm relay stays on till alarm condition lasts. Y = silencing enabled: alarm relay is switched OFF by pressing a key during an alarm.
oA3	Third relay configuration (X60LT: terminals 1-3): (dEF; FAn; ALr; LiG; AUS; onF; db; dEF2; HES) dEF = defrost; FAn = do not select it; ALr = alarm; LiG = light; AUS = Auxiliary relay; onF = always on with instrument on; db = neutral zone; dEF2 = do not select it; HES = night blind.
AoP	Alarm relay polarity: (CL; oP) it set if the alarm relay is open or closed when an alarm occurs. CL = terminals closed during an alarm; oP = terminals open during an alarm.

Digital input polarity (13-14): oP: the digital input is activated by opening the contact;

DIGITAL INPUTS

	CL: the digital input is activated by closing the contact.
i1F	Digital input configuration (13-14): EAL= external alarm: "EA" message is displayed; bAL= serious alarm "CA" message is displayed. PAL= pressure switch alarm, "CA" message is displayed; dor= door switch function; dEF= activation of a defrost cycle; AUS=not enabled; Htr= kind of action inversion (cooling – heating); FAn= not set it; ES= Energy saving; HdF = Holiday defrost (enable only with RTC); onF = to switch the controller off.
did	(050÷255 min) with i1F= EAL or i1F = bAL digital input alarm delay (13-14): delay between the detection of the external alarm condition and its signalling. with i1F= dor: door open signalling delay with i1F= PAL: time for pressure switch function: time interval to calculate the number of the pressure switch activation.
i2P	2 nd digital input polarity (13-19): oP: the digital input is activated by opening the contact; CL: the digital input is activated by closing the contact.
i2F	2nd digital input configuration (13-19): EAL= external alarm: "EA" message is displayed; bAL= serious alarm "CA" message is displayed. PAL= pressure switch alarm, "CA" message is displayed; dor= door switch function; dEF= activation of a defrost cycle; AUS=not enabled; Htr= kind of action inversion (cooling – heating); FAn= not set it; ES= Energy saving; HdF= Holiday defrost (enable only with RTC); onF= to switch the controller off.
d2d	(0÷255 min) with i2F= EAL or i2F= bAL 2 nd digital input alarm delay (13-19): delay

"DC	Dragging quitab number: (0 1E) Number of activation of the procesure quitab during
	number of the pressure switch activation.
	with i2F= PAL: time for pressure switch function: time interval to calculate the
	with i2F= dor: door open signalling delay
	between the detection of the external alarm condition and its signalling.

PPS Pressure switch number: (0 +15) Number of activation of the pressure switch, during the "did" interval, before signalling the alarm event (12F= PAL).

If the nPS activation in the did time is reached, switch off and on the instrument to restart normal regulation.

odC Compressor status when open door: (no; FAn; CPr;F_C: no = normal; Fan = Fan OFF; CPr = Compressor OFF; F_C = Compressor and fan OFF.

rrd Outputs restart after door open alarm: (n; Y) n = outputs follow the odC parameter.
Y = outputs restart with a door open alarm.

HES Delta temperature during an Energy Saving cycle: (-30.0 to 30.0°C: -54 to 54°F)

CURRENT TIME AND WEEKLY HOLIDAYS (ONLY FOR MODELS WITH RTC)

Hur	Current hour: 0 to 23h.		
Min	Current minute: 0 to 59min.		
dAY	Current day: Sun to SAt.		
Hd1	First weekly holiday: (Sun to nu) set the first day of the week which follows the holiday		
	times.		
Hd2	Second weekly holiday: (Sun to nu) set the second day of the week which follows the		
	holiday times.		

N.B.: Hd1, Hd2 can be set also as "nu" value (Not Used)

ENERGY SAVING TIMES (ONLY FOR MODELS WITH RTC)

ILE	Energy Saving cycle start during workdays: (0 to 23h50min) during the Energy Saving cycle the set point is increased by the value in HES so that the operation set point is SET+HES.
dLE	Energy Saving cycle length during workdays: (0 to 24h00min) sets the duration of the Energy Saving cycle on workdays.
ISE	Energy Saving cycle start on holidays: 0 to 23h50min.
dSE	Energy Saving cycle length on holidays: 0 to 24h00min.

TO SET DEFROST TIMES (ONLY FOR MODELS WITH RTC)

Ld1Ld6	Workday defrost start: (0 to 23h50min) these parameters set the beginning of the 6 programmable defrost cycles during workdays. Ex: when Ld2=12.4 the second defrost starts at 12.40 during workdays.		
Sd1Sd6	Holiday defrost start: (0 to 23h50min) these parameters set the beginning of the 6 programmable defrost cycles on holidays. Ex: when Sd2=3.4 the second defrost starts at 3.40 on holidays.		

N.B.: to disable a defrost cycle set it to "nu" (not used).

OTHER

O III.EII				
LoC	Lock keyboard timer: nu(9) = keyboard never blocked, or 10 to 255 sec			
Adr	Serial address: (1 to 247) identifies the instrument address when connected to a ModBUS compatible monitoring system.			
PbC	Type of probe: (PtC; ntC) it allows to set the kind of probe used by the instrument: PtC = PTC probe; ntC = NTC probe.			
onF	On/Off key enabling: (nU; oFF; ES) nU = disabled; oFF = enabled; ES = not set it.			
dP1	Thermostat probe display.			
dP2	Evaporator probe display.			
dP3	Third probe display.			
dP4	Fourth probe display (only for XW60LH models).			
rSE	Real set point: it shows the set point used during the energy saving cycle or during the continuous cycle.			
rEL	Software release for internal use.			
Ptb	Parameter table code: readable only.			

8. DIGITAL INPUTS

The first digital input (XW60LH: terminals 13-14) is enabled if P3P=n.

With P3P=n and i1F=i2F the second digital input will be disabled.

The free voltage digital inputs are programmable by the i1F and i2F parameters.

8.1 GENERIC ALARM (i1F or i2F = EAL)

As soon as the digital input is activated the unit will wait for **did** time delay before signalling the "EAL" alarm message. The outputs status doesn't change. The alarm stops just after the digital input is deactivated.

8.2 SERIOUS ALARM MODE (i1F or i2F = bAL)

When the digital input is activated, the unit will wait for **did** delay before signalling the "CA" alarm message. The relay outputs are switched OFF. The alarm will stop as soon as the digital input is deactivated

8.3 PRESSURE SWITCH (i1F or i2F = PAL)

If during the interval time set by **did** parameter, the pressure switch has reached the number of activation of the nPS parameter; the "CA" pressure alarm message will be displayed. The compressor and the regulation are stopped. When the digital input is ON the compressor is always OFF. If the nPS activation in the **did** time is reached, switch off and on the instrument to restart normal regulation.

8.4 DOOR SWITCH INPUT (i1F or i2F = dor)

It signals the door status and the corresponding relay output status through the odC parameter: no: normal (any change); FAn: Fan OFF; CPr: Compressor OFF; F_C: Compressor and fan OFF. Since the door is opened, after the delay time set through parameter did, the door alarm is enabled, the display shows the message "dA" and the regulation restarts if rtr=YES. The alarm stops as soon as the external digital input is disabled again. With the door open, the high and low temperature alarms are disabled.

8.5 START DEFROST (i1F or i2F = dEF)

It starts a defrost if there are the right conditions. After the defrost is finished, the normal regulation will restart only if the digital input is disabled otherwise the instrument will wait until the MdF safety time is expired.

8.6 SWITCH THE AUXILIARY RELAY (i1F or i2F = AUS)

With oAx=AUS the digital input will change the status of the auxiliary relay.

8.7 INVERSION OF THE KIND OF ACTION: HEATING-COOLING (i1F or i2F=Htr)

This function allows to invert the regulation of the controller: from cooling to heating and viceversa.

8.8 ENERGY SAVING (i1F or i2F = ES)

The Energy Saving function allows to change the set point value as the result of the SET+HES (parameter) sum. This function is enabled until the digital input is activated.

8.9 ON OFF FUNCTION (i1F or i2F = onF)

To switch the controller on and off

8.10 DIGITAL INPUTS POLARITY

The digital input polarity depends on the i1P and i2P parameters.

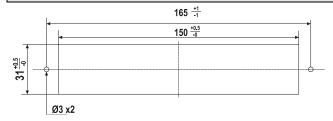
- i1P or i2P =CL: the input is activated by closing the contact.
- i1P or i2P=OP: the input is activated by opening the contact.

9. TTL SERIAL LINE – FOR MONITORING SYSTEMS

The TTL serial line, available through the HOT KEY connector, allows by means of the external TTL/RS485 converter, **XJ485-CX**, to connect the instrument to a monitoring system **ModBUS-RTU** compatible such as the X-WEB500/3000/300.

10. X-REP OUTPUT - OPTIONAL

As optional, an X-REP can be connected to the instrument, trough the dedicated connector



To connect the X-REP to the instrument the following connectors must be used CAB/REP1(1m), CAB/REP2 (2m), CAB/REP5 (5m),

11. INSTALLATION AND MOUNTING

The **XW60LH** shall be mounted on vertical panel, in a 150x31 mm hole, and fixed using the special brackets supplied with the controllers. The temperature range allowed for correct operation is 0 to 60°C. Avoid places subject to strong vibrations, corrosive gases, excessive dirt or humidity. The same recommendations apply to probes. Let the air circulate by the cooling holes.

11.1 CUT OUT

12. ELECTRICAL CONNECTIONS

The instruments are provided with screw terminal block to connect cables with a cross section up to 2.5 mm² for the digital and analogue inputs. Relays and power supply have a Faston connection (6.3mm). Heat-resistant cables have to be used. Before connecting cables make sure the power supply complies with the instrument's requirements. Separate the probe cables from the power supply cables, from the outputs and the power connections. Do not exceed the maximum current allowed on each relay, in case of heavier loads use a suitable external relay.

N.B. Maximum current allowed for all the loads is 20A.

12.1 PROBE CONNECTION

The probes shall be mounted with the bulb upwards to prevent damages due to casual liquid infiltration. It is recommended to place the thermostat probe away from air streams to correctly measure the average room temperature. Place the defrost termination probe among the evaporator fins in the coldest place, where most ice is formed, far from heaters or from the warmest place during defrost, to prevent premature defrost termination.

13. HOW TO USE THE HOT KEY

13.1 PROGRAM A HOT KEY FROM AN INSTRUMENT (UPLOAD)

- Program one controller with the front keypad.
- When the controller is <u>ON</u>, insert the "HOT-KEY" and push UP button; the "uPL" message appears followed a by a flashing "End" label.
- Push SET button and the "End" will stop flashing
- 4. <u>Turn OFF</u> the instrument, remove the "HOT-KEY" and then turn it ON again.

NOTE: the "Err" message appears in case of a failed programming operation. In this case push again button if you want to restart the upload again or remove the "HOT-KEY" to abort the operation.

13.2 PROGRAM AN INSTRUMENT BY USING A HOT KEY (DOWNLOAD)

- Turn OFF the instrument
- Insert a pre-programmed "HOT-KEY" into the 5-PIN receptacle and then turn the Controller ON.
- The parameter list of the "HOT-KEY" will be automatically downloaded into the Controller memory. The 'doL" message will blink followed a by a flashing "End" label.
- 4. After 10 seconds the instrument will restart working with the new parameters.
- Remove the "HOT-KEY"

NOTE: the message "Err" is displayed for failed programming. In this case turn the unit off and then on if you want to restart the download again or remove the "HOT-KEY" to abort the operation.

14. ALARM SIGNALS

Message	Cause	Outputs
P1	Room probe failure	Compressor output acc. to par. Con and CoF
P2	Evaporator probe failure	Defrost end is timed
P3	Third probe failure	Outputs unchanged
P4	Fourth probe failure	Outputs unchanged
HA	Maximum temperature alarm	Outputs unchanged.
LA	Minimum temperature alarm	Outputs unchanged.
HA2	Condenser high temperature	It depends on the AC2 parameter
LA2	Condenser low temperature	It depends on the bLL parameter
dA	Door open	Compressor and fans restarts

Message	Cause	Outputs
EA	External alarm	Output unchanged.
CA	Serious external alarm (i1F=bAL)	All outputs OFF.
CA	Pressure switch alarm (i1F=PAL)	All outputs OFF
rtC	Real time clock alarm	Alarm output ON; Other outputs unchanged; Defrosts according to par. idF Set real time clock has to be set.
rtF Real time clock board failure		Alarm output ON; Other outputs unchanged; Defrosts according to par. idF. Contact the service.

14.1 SILENCING BUZZER / ALARM RELAY OUTPUT

- tbA=Y: the buzzer and the relay are is silenced by pressing any key.
- tbA=n: only the buzzer is silenced while the alarm relay is on until the alarm condition

14.2 ALARM RECOVERY

Probe alarms P1, P2, P3 and P4 start some seconds after the fault in the related probe; they automatically stop some seconds after the probe restarts normal operation. Check connections

Temperature alarms HA, LA, HA2 and LA2 automatically stop as soon as the temperature returns to normal values.

Alarms EA and CA (with i1F=bAL) recover as soon as the digital input is disabled. Alarm CA (with i1F=PAL) recovers only by switching off and on the instrument.

14.3 OTHER MESSAGES

on	Keyboard enabled after automatic lock.
LOC	Keyboard automatically locked
Pon	Keyboard unlocked.
PoF	Keyboard locked
noP	In programming mode: none parameter is present in Pr1 On the display or in dP2, dP3, dP4: the selected probe is nor enabled

15. TECHNICAL DATA

Housing: self extinguishing ABS

Case: facia 38x185 mm; depth [XW60LH: 76mm],

 $\textbf{Mounting:} \ panel \ mounting \ in \ a \ 150x31 \ mm \ panel \ cut-out \ with \ the \ 2 \ metal \ brackets \ supplied$

Protection: IP20 Frontal protection: IP65

Connections: screw terminal block ≤ 2.5 mm² heat-resistant wiring and 6.3mm Faston

Power supply: 230Vac or. 120Vac or 24Vac \pm 10%

Power absorption: 9VA max

Display: 3 digits, white LED, 14.2 mm high Inputs: Up to 4 NTC or PTC probes Digital inputs: 2 free voltage

Relay outputs for XW60LH models: <u>Total current on loads MAX. 20A</u> Compressor: relay SPST 20(8) A, 250Vac

Light: relay SPST 8 or 16(3) A, 250Vac Fans: relay SPST 8(3) A, 250Vac Defrost: relay SPST 8(3) A, 250Vac

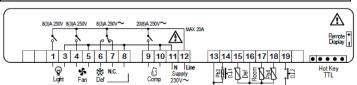
Other output: buzzer Serial output: TTL standard

Communication protocol: Modbus - RTU Data storing: on the non-volatile memory (EEPROM)

Internal clock back-up: 24 hours (only for model with RTC)

Kind of action: 1B Pollution degree: 2 Software class: A Rated impulsive voltage: 2500V

Over voltage Category: II Operating temperature: 0 to 60 °C (32 to 140°F) Storage temperature: -30 to 85°C (-22 to 185°F). Relative humidity: 20 to 85% (not condensing)


Measuring and regulation range:

NTC probe: -40 to 110°C (-40 to 230°F) PTC probe: -50 to 150°C (-58 to 302°F)

Resolution: 0.1°C or 1°C or 1°F (selectable) Accuracy (ambient temp. 25°C): ±0.7°C ±1 digit

16. CONNECTIONS

16.1 XW60LH

Supply: 120Vac or 24Vac: connect to terminals 11-12

The X-REP output is optional

The light relay can be also 16(5)A according to the model

1	7.	DEFAU	LT SET	TING	VALUES	S
---	----	-------	--------	------	--------	---

Label	Name	Range	°C/°F	Level
Set	Set point	LS÷US	-5.0	
rtc*	Real time clock menu	-		Pr1
Ну	Differential	0,1÷25.5°C/ 1÷ 255°F	2.0	Pr1
LS	Minimum set point	-50°C÷SET/-58°F÷SET	-50.0	Pr2
US	Maximum set point	SET÷110°C/SET ÷ 230°F	110	Pr2
Ot	Thermostat probe calibration	-12÷12°C /-120÷120°F	0.0	Pr1
P2P	Evaporator probe presence	n=not present; Y=pres.	Υ	Pr1

Label	Name	Range	°C/°F	Level
OE	Evaporator probe calibration	-12÷12°C /-120÷120°F	0.0	Pr2
P3P	Third probe presence	n=not present; Y=pres.	n	Pr2
O3 P4P	Third probe calibration	-12÷12°C /-120÷120°F	0	Pr2
	Fourth probe presence Fourth probe calibration	n=not present; Y=pres. -12÷12°C /-120÷120°F	n 0	Pr2 Pr2
	Outputs delay at start up	0÷255 min	0	Pr2
AC	Anti-short cycle delay	0 ÷ 50 min	1	Pr1
Ac1		0÷255s	5	Pr2
rtr CCt	P1-P2 percentage for regulation Continuous cycle duration	0 ÷ 100 (100=P1 , 0=P2) 0.0÷24.0h	100 0.0	Pr2 Pr2
	Set point for continuous cycle	(-55.0÷150,0°C) (-67÷302°F)	-5	Pr2
	Compressor ON time with faulty probe	0 ÷ 255 min	15	Pr2
COF	Compressor OFF time with faulty probe	0 ÷ 255 min	30	Pr2
CF rES	Temperature measurement unit	°C÷°F	°C dE	Pr2
	Resolution Probe displayed	in=integer; dE= dec.point P1:P2	P1	Pr1 Pr2
	X-REP display	P1 – P2 – P3 – P4 – SEt – dtr	P1	Pr2
dLy	Display temperature delay	0 ÷ 20.0 min (10 sec.)	0.0	Pr2
dtr EdE*	P1-P2 percentage for display Kind of interval for defrost	1 ÷ 99 rtc ÷in	50 in	Pr2 Pr2
tdF	Defrost type	EL=el. heater; in= hot gas	EL	Pr1
	Probe selection for defrost termination	nP; P1; P2; P3; P4	P2	Pr2
dtE	Defrost termination temperature	-50 ÷ 50 °C	8	Pr1
ldF	Interval between defrost cycles	1 ÷ 120 ore	6	Pr1
MdF dSd	(Maximum) length for defrost Start defrost delay	0 ÷ 255 min 0÷99min	30 0	Pr1 Pr2
dFd		rt, it, SEt, DEF	it	Pr2
dAd	MAX display delay after defrost	0 ÷ 255 min	30	Pr2
	Draining time	0÷120 min	0	Pr2
	First defrost after start-up	n=after ldF; y=immed.	0.0	Pr2
dAF Fnc	Defrost delay after fast freezing Fan operating mode	0 ÷ 23h e 50' C-n, o-n, C-y, o-Y	0.0 o-n	Pr2 Pr1
Fnd	Fan delay after defrost	0÷255min	10	Pr1
	Differential of temperature for forced activation		10	Pr2
FSt	of fans Fan stop temperature	-50÷50°C/-58÷122°F	2	Pr1
	Fan on time with compressor off	0÷15 (min.)	0	Pr2
FoF	Fan off time with compressor off	0÷15 (min.)	0	Pr2
FAP	Probe selection for fan management	nP; P1; P2; P3; P4	P2	Pr2
	Kind of action for auxiliary relay Set Point for auxiliary relay	CL; Ht -50,0÷110°C / -58÷230°F	0,0	Pr2 Pr2
	Differential for auxiliary relay	0,1÷25.5°C/ 1÷ 255°F	2,0	Pr2
ArP	Probe selection for auxiliary relay	nP / P1 / P2 / P3/P4	nP	Pr2
	Auxiliary relay operating during defrost	n÷y	n	Pr2
ALP	Alarm probe selection Temperat. alarms configuration	nP; P1; P2; P3; P4 rE= related to set;	P1	Pr2
ALC	Temperat. diarnis configuration	Ab = absolute	Ab	Pr2
	MAXIMUM temperature alarm	Set÷110.0°C; Set÷230°F	110,0	Pr1
	Minimum temperature alarm	-50.0°C÷Set/ -58°F÷Set	-50,0	Pr1
	Differential for temperat. alarm recovery Temperature alarm delay	(0,1°C÷25,5°C) (1°F÷45°F) 0 ÷ 255 min	2,0 15	Pr2 Pr2
	Delay of temperature alarm at start up	0 ÷ 23h e 50'	1,3	Pr2
	Probe for temperat. alarm of condenser	nP; P1; P2; P3; P4	P4	Pr2
	Condenser for low temperat. alarm	(-55 ÷ 150°C) (-67 ÷ 302°F)	-40	Pr2
	Condenser for high temperat. alarm Differ. for condenser temp. alar. recovery	(-55 ÷ 150°C) (-67 ÷ 302°F) [0,1°C ÷ 25,5°C] [1°F ÷ 45°F]	110 5	Pr2 Pr2
	Condenser temperature alarm delav	0 ÷ 254 (min.) , 255=nU	15	Pr2
dA2	Delay of cond. temper. alarm at start up	0.0 ÷ 23h 50′	1,3	Pr2
bLL	Compr. off for condenser low temperature alarm		n	Pr2
AC2	Compr. off for condenser high temperature alarm	n(0) - Y(1)	n	Pr2
tbA		n=no; y=yes	У	Pr2
oA3	Fourth relay configuration	ALr = alarm; dEF = do not select it;		
		Lig =Light; AUS =AUX; onF=always on; Fan= do not select it; db = neutral	Lig	Pr2
		zone; cP2 = second compressor; dF2	LIY	PIZ
		= do not select it; HES = night blind		
AoP	Alarm relay polarity (oA3=ALr)	oP; cL	cL	Pr2
i1P i1F	Digital input polarity (13-14) Digital input 1 configuration (13-14)	oP=opening;CL=closing EAL, bAL, PAL, dor; dEF; Htr, AUS	cL dor	Pr1 Pr1
did	Digital input alarm delay (13-14)	0÷255min	15	Pr1
i2P	Digital input polarity (13-19)	oP=opening;CL=closing	cL	Pr2
i2F d2d	Digital input configuration (13-19) Digital input alarm delay (13-19)	EAL, bAL, PAL, dor; dEF; Htr, AUS 0÷255min	EAL 5	Pr2 Pr2
		0÷255min 0 ÷15	15	Pr2
odc	Compress and fan status when open door	no; Fan; CPr; F_C	F-c	Pr2
rrd	Regulation restart with door open alarm	n - Y	у	Pr2
HES Hur*	Differential for Energy Saving Current hour	(-30°C÷30°C) (-54°F÷54°F) 0÷23	0	Pr2 rtc
Hur Min*	Current mour	0 ÷ 23 0 ÷ 59		rtc
dAY*	Current day	Sun ÷ SAt	-	rtc
	First weekly holiday	Sun÷ SAt – nu	nu	rtc
Hd2* ILE*	Second weekly holiday Energy Saving cycle start during workdays	Sun÷ SAt – nu 0 ÷ 23h 50 min.	nu 0	rtc rtc
	Energy Saving cycle start during workdays Energy Saving cycle length during workdays	0 ÷ 24h 00 min.	0	rtc
ISE*	Energy Saving cycle start on holidays	0 ÷ 23h 50 min.	0	rtc
dSE*		0 ÷ 24h 00 min.	0	rtc
Ld1* Ld2*		0 ÷ 23h 50 min nu 0 ÷ 23h 50 min nu	6.0 13.0	rtc rtc
Ld2 Ld3*	3 rd workdays defrost start	0 ÷ 23h 50 min nu	21.0	rtc
Ld4*	4 th workdays defrost start	0 ÷ 23h 50 min nu	0.0	rtc
Ld5*	5th workdays defrost start	0 ÷ 23h 50 min nu	0.0	rtc
Ld6* Sd1*	6 th workdays defrost start 1 st holiday defrost start	0 ÷ 23h 50 min nu 0 ÷ 23h 50 min nu	6.0	rtc rtc
Sd2*	2 nd holiday defrost start	0 ÷ 23h 50 min nu 0 ÷ 23h 50 min nu	13.0	rtc
Sd3*	3 rd holiday defrost start	0 ÷ 23h 50 min nu	21.0	rtc
Sd4*	4 th holiday defrost start	0 ÷ 23h 50 min nu	0.0	rtc
47h2	5th holiday defrost start	0 ÷ 23h 50 min nu 0 ÷ 23h 50 min nu	0.0	rtc rtc
	Ath holiday defrect start			· HC
	6 th holiday defrost start Serial address	0 ÷ 23H 30 Hilli. • Hu 1÷247	1	
Sd6* Adr PbC	Serial address			Pr2 Pr2

Installing and operating instructions

Label	Name	Range	°C/°F	Level
dP1	Room probe display			Pr2
dP2	Evaporator probe display		-	Pr2
dP3	Third probe display		-	Pr2
dP4	Fourth probe display			Pr2
rSE	Real set	actual set	-	Pr2
rEL	Software release		1.8	Pr2
Ptb	Map code			Pr2

^{*} Only for model with real time clock ² Only for XW60LH with X-REP output

Dixell[®]

Dixell S.r.I. - Z.I. Via dell'Industria, 27 - 32010 Pieve d'Alpago (BL) ITALY Tel. +39.0437.9833 r.a. - Fax +39.0437.989313 - EmersonClimate.com/Dixell - dixell@emerson.com